Tetrahedron Letters,Vol.27,No.18,pp 2033-2036,1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

STEREOSELECTIVE SYNTHESIS OF <u>Z</u>-DISUBSTITUTED OLEFINS VIA 2,3-SIGMATROPIC REARRANGEMENTS. AN APPROACH TO LEUKOTRIENES.

Aston D. Kaye and Gerald Pattenden* Department of Chemistry, The University, Nottingham, NG7 2RD. Stanley M. Roberts Glaxo Research Ltd., Greenford, Middlesex, UB6 OHE.

<u>Summary:</u> Stereoselective 2,3-sigmatropic rearrangement of the propargyl 2-silylallyl ether(5) leads to the vinyl silane (7), which, after protiodesilylation and palladium catalysed coupling to 3-bromoprop-2-enol, produces the $\underline{Z}, \underline{E}$ -dienynol(10) a key intermediate in leukotriene synthesis.

Sigmatropic rearrangements of all types have been used in a number of ways to control stereochemical detail in a wide range of synthetic procedures.¹ In connection with synthetic investigations amongst the leukotriene family of arachidonic acid metabolites, e.g. leukotriene $B_4(1)^2$ we required a flexible synthetic entry to $\underline{Z}, \underline{E}$ -dienes of the type shown in (2). In this Letter we outline a solution to this interesting problem, which is based on a novel stereoselective 2,3-sigmatropic rearrangement of an appropriate propargyl 2-silylallyl ether (\underline{viz} 5->7) followed by protodesilylation to the \underline{Z} -enynol silyl ether(6) and coupling of the latter to E-3-bromoprop-2-enol in the presence of a palladium catalyst.

A Grignard reaction between hexanal and trimethylsilylvinyl magnesium bromide first led to the secondary alcohol(3; 60%), which under phase-transfer catalysed conditions($Bu_4^{\dot{N}}$.HSO₄, 50% aq. NaOH) with propargyl bromide gave rise to the propargyl 2-trimethylsilylallyl ether(4; 71%). Treatment of (4) with <u>n</u>-butyllithium followed by trimethylsilyl chloride then provided the <u>bis</u>-silane(5). The <u>bis</u>-silane(5) underwent an efficient, stereoselective 2,3-sigmatropic rearrangement at -30°C in tetrahydrofuran in the presence of

2033

<u>n</u>-butyllithium to produce the <u>E</u>-vinylsilane(7) containing less than 20% of the corresponding <u>Z</u>-isomer in a combined yield of 84%.^{3,4} Treatment of (7) with sodium hydride in dimethylformamide resulted in selective desilylation leading to the vinylsilane(8<u>a</u>; 88%). Finally, after protection of (8<u>a</u>) as the corresponding <u>t</u>-butyldiphenylsilyl ether(8<u>b</u>), protiodetrimethylsilylation in the presence of hydriodic acid led to the <u>Z</u>-enynol ether(9).⁵ A coupling reaction between (9) and <u>E</u>-3-bromoprop-2-en-1-ol in the presence of Pd(PPh₃)₄-CuI-Et₂NH then gave rise to the key intermediate(2) as its t-butyldiphenylsilyl ether(10).⁶

The use of the trimethylsilyl group in (5) to both introduce and control the \underline{Z} -geometry of the double bond in the 2,3-sigmatropic rearrangement-protiodesilylation sequence leading to (9) is quite remarkable, and to our knowledge without precedent. From studies of the stereoselectivity of 2,3-sigmatropic rearrangements by Still and Mitra⁷, and others⁸, it is clear that the bulky vinyltrimethylsilyl group ensures a transition state for the rearrangement of (5) whereby the pentyl group is pseudo-axial (see formula 6), thereby leading to the \underline{E} -enynol(7). In addition, the propargyl ether grouping itself would also appear to be important in controlling the stereospecificity of the rearrangement of (5), since the corresponding $\underline{\text{bis}}$ -allylic ether(lla) led to only 33% of the \underline{E} -dienol(l2). In related model work, 2,3-sigmatropic rearrangement from the propargyl allyl ethers(llb) and (13) devoid of silicon substitution on their allylic residues, produced almost entirely the E-carbinols (14) and (15) respectively.

The new stereoselective synthesis of \underline{Z} -disubstituted olefins, taken in conjunction with the known propensity for optically active <u>bis</u>-allylic ethers to transfer chirality during 2,3-sigmatropic rearrangement⁹ makes the approach to (10) and analogous compounds, described here, a particularly attractive one for development in the leukotriene field. This development, along with others, is now being pursued.

We thank Glaxo Group Research Ltd. for financial support (Fellowship to A.D.K.).

REFERENCES

1.	See, for	exam	ple: I	R.W.	Hot	ffmann,	Angew.Chem.Int.Ed	<u>it</u> ., 19	979, <u>18</u>	<u>3</u> , 50	53;
	T. Nakai	, к.	Mikami	and	N.	Sayo,	J.Synth.Org.Chem.,	Jpn.,	1983,	<u>41</u> ,	100.

 P.J. Piper, <u>Physiol.Rev.</u>, 1984, <u>64</u>, 744; C.L. Malmsten, <u>Crit.Rev.</u> <u>Immunol</u>., 1984, <u>4</u>, 307; T. Ruzicka, T. Simnet, B.A. Peskar and O. Braur-Falco, <u>Lancet</u>, 1984, 222; S.A. Rae, E.M. Davidson and M.J.H. Smith, <u>ibid</u>, 1982, 1122; S.D. Brain, R.D.R. Camp, P.M. Dowd, A.K. Black, P.M. Woollard, A.I. Mallet and M.W. Greaves, <u>ibid</u>, 1982, 762. For recent synthetic work and leading references see: K.C. Nicolaou,

R.E. Zipkin, R.E. Dolle and B.D.Harris, <u>J.Am.Chem.Soc</u>., 1984, <u>106</u>, 3548;
M. Furber and R.J.K. Taylor, <u>J.Chem.Soc</u>., <u>Chem.Commun</u>., 1985, 782;
Y. Le Merrer, A. Duréault, C. Gravier, D. Languin and J.C. Depezay, <u>Tetrahedron Letters</u>, 1985, <u>26</u>, 319; R.H. Green and P.F. Lambeth, <u>Tetrahedron</u>, 1983, <u>39</u>, 1687.

- All new compounds showed satisfactory spectral data, in addition to microanalytical and/or mass spectroscopic data.
- 4. $\underline{Z}-\underline{E}$ -Isomer ratios were determined by a combination of capillary g.c. analysis and inspection of c.m.r. data. The \underline{E} -vinylsilane(7) showed: $\delta_{\mathrm{H}}0.09(\mathrm{SiMe}_{3})$, 0.16(SiMe_{3}), 0.88(t, $\underline{J}7$, CH₂CH₃), 1.3(m, 6H), 1.92(OH), 2.17(m, 2H), 2.59(m, 2H), 4.35(t, $\underline{J}7$, CHCH₂), 5.96(t, $\underline{J}7$, :CH); δ_{C} -0.7(SiMe_{3}), -0.05(SiMe_{3}), 14.1(Me), 22.7(CH₂), 29.3(CH₂), 31.73(CH₂), 32.45(CH₂), 38.14(CH₂), 62.5(CH), 89.2, 107.0, 135.5, 145.46(:CH)p.p.m. Simple chromatography of the mixture of \underline{Z} -and \underline{E} -isomers of (8), obtained by treatment of (7) with NaH-DMF, was all that was necessary to separate the pure \underline{E} -isomer(8).
- 5. The silyl ether(9) showed: $\delta_{H}^{2.13(d, J^{2}, \equiv CH), 4.25(dt, J^{2} and 7, CH_{2}CH(0)C\equiv CH), 5.37(m, 2H); \delta_{C}^{14.2(Me), 19.4(SiMe_{3}), 22.7(CH_{2}), 27.1(CMe_{3}), 27.5(CH_{2}), 29.4(CH_{2}), 31.6(CH_{2}), 36.4(CH_{2}), 63.8(CH), 72.8, 84.9(\equiv CH), 123.9(:CH), 133.0(:CH)p.p.m. The <u>Z</u>- and <u>E</u>-geometries assigned to isomers in this study were made after specific decoupling and nOe experiments.$
- 7. W.C. Still and A. Mitra, J.Am.Chem.Soc., 1978, 100, 1927.
- See ref.9 and T. Nakai, K. Mikami, S. Taya and Y. Fujita, <u>J.Am.Chem.Soc</u>., 1981, <u>103</u>, 6492; K. Mikami, Y. Kimura, N. Kishi and T. Nakai, J.Org.Chem., 1983, 48, 281.
- J.E. Baldwin and J.E. Patrick, <u>J.Am.Chem.Soc</u>., 1971, <u>93</u>, 3556;
 J.A. Marshall and T.M. Jenson, <u>J.Org.Chem</u>., 1984, <u>49</u>, 1707;
 D. J-S. Tsai and M.M. Midland, <u>ibid</u>, 1984, <u>49</u>, 1842; <u>idem</u>.,
 <u>J.Am.Chem.Soc</u>., 1985, <u>107</u>, 3915; N. Sayo, F. Shirai and T. Nakai,
 <u>Chemistry Letters</u>, 1984, 255; N. Sayo, E. Kitahara and T. Nakai, <u>ibid</u>,
 1984, 259; N. Sayo, K. Azuma, K. Mikami and T. Nakai, <u>Tetrahedron</u>
 <u>Letters</u>, 1984, <u>25</u>, 565 and refs. therein.

(Received in UK 11 March 1986)